Kingdom of Saudi Arabia

The National Commission for Academic Accreditation \&
 Assessment

Course Specification

Institution: University of Dammam

College/Department: College of Sciences / Department of Mathematics
A. Course Identification and General Information

1. Course title and code: Basic Geometry; Math $\mathbf{4 7 1} \mathbf{~ N}$
2. Credit hours: $\mathbf{3}$
3. Program(s) in which the course is offered: Mathematics program
4. Name of faculty member responsible for the course:
A specific team from the mathematics department
5. Level/year at which this course is offered:
6. Pre-requisites for this course (if any):math $\mathbf{1 2 6}$
7. Co-requisites for this course (if any): N/A
8. Location if not on main campus: College of Sciences - Girls Campus - Rayan
City

9. Mode of Instruction (mark all that apply)

| a. traditional classroom | X | What percentage? 85% |
| :--- | :--- | :--- | :--- |
| b. blended (traditional and online) What percentage?
 c. e-learning X What percentage? 15%
 d. correspondence What percentage?
 f. other What percentage? | | |

Comments: The e-learning concerns the use of blackboard, flip teaching, online assessment, ect.

B Objectives

1. What is the main purpose for this course?

On successful completion of this course students will be able to: Determine the mathematical models and its properties Using the deductive method .
Applied theories of congruence and
betwennness . Determine the Helbert
Space .
Differentiate between Neutral Geometry and Euclidean Geometry .
2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Create, improve and complete (beamer or power point) presentations.
- Update the course by comparing to the contents at other universities.
- Follow up on the latest books to select the most appropriate to update the contents.
- Find web sites related to the topic.
C. Course Description (Note: General description in the form used in Bulletin or
handbook) Course Description:

1. Topics to be Covered		
List of Topics	No. of Weeks	Contact hours
The axiomatic method	$\mathbf{3}$	4
Logic and incidence Geometry	$\mathbf{9}$	12
Betweenness axioms and theorems	$\mathbf{6}$	8
Congruence axioms and theorems	$\mathbf{9}$	12
Axioms of parallesim - Archimede's Axiom and Dedkind;s Axioms	3	4
Neutral Geometry	12	20

2. Course components (total contact hours and credits per semester):

	Lectur e	Tutoria 1	Laborato ry or Studio	Practical	Other \vdots	Total
Offic e hours						
Contact Hours	$\mathbf{2 * 1 5}=$ $\mathbf{3 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 * 1 5 = 3 0}$	$\mathbf{4 * 1 5}=$ $\mathbf{6 0}$	$\mathbf{1 2 0}$
Credit	$\mathbf{2 * 1 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 * 1 5}$	$\mathbf{0}$	$\mathbf{4 5}$

3. Additional private study/learning hours expected for students per week.
4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and
T
e
a
c
h
i
n
$\stackrel{\mathrm{g}}{\mathrm{S}}$

On the table below are the five NQF Learning Domains, numbered
in the left column.

First, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). Second, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. Third, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

$\begin{gathered} \hline \mathbf{C o d} \\ \mathbf{e} \\ \# \end{gathered}$	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	$\begin{gathered} \hline \text { Course } \\ \text { Assessment } \\ \text { Methods } \end{gathered}$
1.0	Knowledge		
		Interactive learning process through questions and answers in class. Worked examples through a sequential delivery of surveying lectures. Homework consisting in solving selected exercises.	Exams and homework are used to assess the acquired knowledge on the subject.
2.0	Cognitive Skills		
		Lectures are covered by different worked examples. Engage students in discussions with questions and answers. Homework consisting in solving selected exercises. Encourage and develop self education.	Homework include problems, solution of which requires scientific thinking, and applications of essential theorems and results of the course Oral and written tests. Explain and communicate the corrected answers of the exams and quizzes. Research projects.
3.0	Interpersonal Skills \& Responsibility		
	Punctual attendance of classes is required. Students should demonstrate their sense of responsibility for learning by completing both reading and writing assignments in due time. Students learn to manage their time. Accustom students to take responsibility of self learning Students should act responsibly and ethically in	Discussion. Explanation. Guidance and supervision of the group assignments for research projects. Assignments are given to the students at regular intervals for them to solve and submit on time.	Class attendance of students at the beginning of the lecture is recoded. Recording of submission of assignment Observations, interviews, and peer evaluations.

	carrying out individual as well as group projects.		
4.0	Communication, Information Technology, Numerical	Research projects.	Periodic written and oral tests.
	Ability to communicate in written and in oral. Ability to write reports in English Ability to explain each step in the problem solving process.	Oral presentations.	
Ability to apply course concepts to mathematical problem solving model.	Discussion.		
Ability to use information technology in communication and research projects.	Observation. Interact with life problems using different methods of thinking and problem solving.		
$\mathbf{5 . 0}$	Psychomotor	N/A	
	N/A	N/A	

5. Map course LOs with the program LOs. (Place course LO \#s in the left column and program LO \#s
across the top.)

6. Schedule of Assessment Tasks for Students During the Semester			
	Assessment task (e.g. essay, test, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment
1	Quizz 1	$\mathbf{4}$	$\mathbf{5 \%}$
2	Mid-term1	$\mathbf{7}$	$\mathbf{1 2 \%}$
3	Quizz2 -3	$\mathbf{9 - 1 1}$	$\mathbf{1 0 \%}$
4	Mid-term2	$\mathbf{1 2}$	$\mathbf{1 3 \%}$
5	Homework		$\mathbf{5 \%}$
6	Research project	$\mathbf{1 3 - 1 4}$	$\mathbf{5 \%}$
7	Final exam	As scheduled	$\mathbf{5 0 \%}$

D. Student Academic

Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

4 hrs/week for students' consultation and academic advice.

E Learning Resources

1. List Required Textbooks

Marvin Jay Greenberg; Euclidean \& Non-EuclideanGeometry , Development and
History, $3^{\text {rd }}$ Edition 1993.
Robin Harshorne ; Geometry : Euclid and beyond, Springer 2000.
D. Hilbert, Foundation of Geometry Court Publishing Combany1977 .
D.W. Henderson and Daina Taiamina ' Experiencing

Geometry: In Euclidean , Spherical and Hyperbolic spaces

- Prentice hall 2000 .

2. List Essential References Materials (Journals, Reports, etc.)
3. List Recommended Textbooks and Reference Material (Journals, Reports, etc)

$$
\begin{aligned}
& \text { شينطولا دهف كلملا شبتكم ، يرسودلا حلاف .د.أ ، شُبديلقالدلاو و ، } 2000
\end{aligned}
$$

4. List Electronic Materials, Web Sites, Facebook, Twitter, etc.
5. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

F. Facilities Required

```
Indicate requirements for the course including size of classrooms and laboratories (i.e.
number
of seats in classrooms and laboratories, extent of computer access etc.)
1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
Lecture room with
30 seats. Smart
class.
2. Computing resources (AV, data show, Smart Board, software, etc.)
Computer room with at least 10 systems Computer room with 30 seats
3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)
```

G Course Evaluation and Improvement Processes
1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

Student course evaluation at the conclusion of the course. Sample of assignments and tests. Observations and discussions during the semester.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department
Faculty assessment of the course and effectiveness of teaching delivery. Periodic self-assessment of the program.
3 Processes for Improvement of Teaching
Participate to workshops on evaluation approaches and effective teaching methods to enable instructors to improve their teaching skill. Teaching method will focus on students' learning and on course learning outcomes.
4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)

A Committee reviews samples of student work in this course to check on the standard of grades and achievements.
An external faculty member evaluates the course material and the students' work to compare the standard of grades and achievements with those at his university.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

Carry out Self- assessment at every two years and external assessment invited faculty members every four years. The feedback received from these assessments will be used to plan for further improvement in the course syllabus, teaching method, and delivery of course materials.

