

FACULTY FULL NAME: Kamel Mukhtar Saoudi

POSITION : Associate professor

Personal Data

Nationality | French Date of Birth | 02/09/1980 Department | Mathematics

Official UoD Email | kmsaoudi@uod.edu.sa

Office Phone No. |

Language Proficiency

Language	Read	Write	Speak
Arabic	х	х	х
English	х	х	х
Others(French)	x	x	x

Academic Qualifications (Beginning with the most recent)

Date	Academic Degree	Place of Issue	Address
2009	PhD	University Of Toulouse	French
2005	Master	University Of Toulouse	French
2004	Fellowship	University Of Perpignan	French
2000	Bachelor	School of Cebella	Tunisia

PhD, Master or Fellowship Research Title: (Academic Honors or Distinctions)

PhD	Study of some elliptic quasilinear and singular Problems	
Master	Multiplicity of positive solutions for quasilinear problem with p-laplacian operator	
Fellowship	The function of Moreau Yosida	

Professional Record: (Beginning with the most recent)

Job Rank	Place and Address of Work	Date
Associate professor	University of Dammam	2018/2019
Assistant professor	University of Dammam	2013/2018
Assistant professor	University of Sousse	2012/2013
Assistant	University of Gabes	2010/2012
Assistant	University of Toulouse	2008/2010
Lecturer	University of Toulouse	2005/2008

Administrative Positions Held: (Beginning with the most recent)

Administrative Position	Office	Date

Scientific Achievements

Published Refereed Scientific Researches

(In Chronological Order Beginning with the Most Recent)

#	Name of Investigator(s)	Research Title	Publisher and Date of Publication
1	Kamel Saoudi and Jacques	Multiplicity of positive	Nonlinear Analysis : Theory,
	Giacomoni	solutions for a singular and	Methods and Applications, 71
		critical problem	(9), pp. 4060- 4077. (2009)
2	Kamel Saoudi and Jacques	\$W^{1,p}_0\$ versus	J. <u>Math</u> . Anal. <u>Appl</u> ., 363,
	Giacomoni	\$C^1\$ local minimizers	(2010), no. 2, 697-710.
		for a singular and critical	
		functional	
3	Kamel Saoudi and Jacques	Multiplicity results for	Advances in Differential
	Giacomoni	elliptic equations with	Equations (March/April) 2012
		singular nonlinearity of	Volume 17 Numbers 3-4
		super exponential growth	
		in R2	
4	Kamel Saoudi	Existence and non-	Journal of Abstract and
		existence of positive	Applied Analysis
		solutions for quasilinear	(Volume 2012 (2012)
	Kamal Casudi	elliptic problems	IOUDNAL OF DADTIAL
Э	Kamel Saoudi	$\mathcal{W}_{1,p(x)}$ Versus	JOURNAL OF PARTIAL
		schip local minimizers for	DIFFERENTIAL
		a functional with critical	Vol 27 No 2 pp 1 10
6	Kamel Saoudi and Mouna	Existence of multiple	Complex Var Elliptic Equ
Ŭ	Kaniel Saoudi and Would Kratou	solutions for a singular and	60(2015) no 7 893925
	mutou	quasilinear equation	00 (2010), 10.7, 075 725.
7	Kamel Saoudi and	The Nehari manifold for a	Fractional Differential
	Abdeljabbar Ghanmi	singular elliptic equation	Calculus, 6, Number 2
		involving the fractional	(2016), 201217.
		Laplace operator	
8	Kamel Saoudi and	A multiplicity results for a	Complex variables and
	Abdeljabbar Ghanmi	singular problem	elliptic equations, 61, 9
		involving the fractional \$p-	(2016) 11991216.
		\$ <u>Laplacian</u> operator	
9	Kamel Saoudi	Existence and non-	J. <u>Adv. Math.</u> Stud. <u>Vol</u> . 9,
		existence of solution for a	(2016), No. 2, 292-303.
		singular <u>nonlinear</u> <u>Dirichlet</u>	
		problem involving the	
		\$p(x)-\$Laplace operator	
10	Kamel Saoudi and Mouna	Multiplicity results for the Φ	accepted for publication in
	Kratou and Sarah Al-	\$p(x)-\$ <u>Laplacian</u> equation	International Journal of
	Sadnan	with singular <u>nonlinearities</u>	Differential Equations
		and <u>nonlinear</u> Neumann	
11	Kamal Casadi	Doundary condition	opported for multipation in
	Kamel Saoudi	wintiplicity results for a	accepted for publication in
		quasilinear problem	Complex <u>var</u> . Emptic <u>Equ</u>

		involving the \$p(x)- \$ <u>Laplacian</u>	
12	Kamel Saoudi and Abdeljabbar Ghanmi	A multiplicity results for a singular equation involving the \$p(x)- \$Laplace operator	accepted for publication in Complex <u>Var</u> . Elliptic <u>Equ</u>

Refereed Scientific Research Papers Accepted for Publication

#	Name of Investigator(s)	Research Title	Journal	Acceptance Date
1	Kamel Saoudi and Jacques Giacomoni	Multiplicity of positive solutions for a singular and critical problem	Nonlinear Analysis : Theory, Methods and Applications, 71 (9), pp. 4060- 4077. (2009)	2009
2	Kamel Saoudi and Jacques Giacomoni	\$W^{1,p}_0\$ versus \$C^1\$ local minimizers for a singular and critical functional	J. Math. Anal. Appl., 363, (2010), no. 2, 697-710.	2010
3	Kamel Saoudi and Jacques Giacomoni	Multiplicity results for elliptic equations with singular nonlinearity of super exponential growth in R2	Advances in Differential Equations (March/April) 2012 Volume 17 Numbers 3-4	2012
4	Kamel Saoudi	Existence and non- existence of positive solutions for quasilinear elliptic problems	Journal of Abstract and Applied Analysis "(Volume 2012 (2012)	2012
5	Kamel Saoudi	\$W_0^{1,p(x)}\$ versus \$C^1\$ local minimizers for a functional with critical growth	JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS Vol. 27, No. 2, pp. 1-10	2014
6	Kamel Saoudi and Mouna Kratou	Existence of multiple solutions for a singular and quasilinear equation	Complex Var. Elliptic Equ. 60 (2015), no.7, 893 925.	2015
7	Kamel Saoudi and Abdeljabbar Ghanmi	The <u>Nehari</u> manifold for a singular elliptic equation involving the	Fractional Differential Calculus, 6,	2016

		fractional Laplace	Number 2 (2016),	
		operator	201217.	
8	Kamel Saoudi and	A multiplicity results for	Complex variables	2016
	Abdeljabbar Ghanmi	a singular problem	and elliptic	
		involving the fractional	equations, 61, 9	
		\$p-\$ <u>Laplacian</u> operator	(2016) 11991216.	
9	Kamel Saoudi	Existence and non-	J. Adv. Math. Stud.	2016
		existence of solution for	Vol. 9, (2016), No.	
		a singular <u>nonlinear</u>	2, 292-303.	
		Dirichlet problem		
		involving the \$p(x)-		
		\$Laplace operator		
10	Kamel Saoudi and	Multiplicity results for	accepted for	2016
	Mouna Kratou and	the $p(x)-Laplacian$	publication in	
	Sarah Al-Sadhan	equation	International	
		with singular	Journal of	
		nonlinearities and	Differential	
		nonlinear Neumann	Equations	
		boundary condition		
11	Kamel Saoudi	Multiplicity results for a	accepted for	2016
		quasilinear problem	publication in	
		involving the $p(x)$ -	Complex Var.	
		\$ <u>Laplacian</u>	Elliptic Equ	
12	Kamel Saoudi and	A multiplicity results for	accepted for	2016
	Abdeljabbar Ghanmi	a singular equation	publication in	
		involving the $p(x)$ -	Complex Var.	
		\$Laplace operator	Elliptic Equ	

Scientific Research Papers Presented to Refereed Specialized Scientific Conferences

#	Name of Investigator(s)	Research Title	Conference and Publication Date

Completed Research Projects

#	Name of Investigator(s) (Supported by)	Research Title	Report Date
1	Kamel Saoudi and Mouna Kratou	Existence of multiple solutions for a singular and quasilinear equation	2014
2	Kamel Saoudi and Mouna Kratou	A multiplicity results for a singular problem involving the fractional \$p-\$ <u>Laplacian</u> operator	2015

Current Researches

#	Research Title	Name of Investigator(s)

Contribution to Scientific Conferences and Symposia

#	Conference Title	Place and Date of the Conference	Extent of Contribution
1	The 18 th Tunisian Mathematical society symposium,	Mahdia (Tunisia) 19-22 march 2012	Presence
2	The 17 th Tunisian Mathematical society symposium, SMT- CSMT	Sousse (Tunisia) 15-19 march 2010	Presence
3	The first Tunisian- Franco Conference of Mathematics	Djerba- Tunisia 19-20 march 2009	Give a Talk
4	10 th conferences of applied mathematics and statistics	Jaca (Spain) 15-17 september 2008	Presence
5	The 16 th Tunisian Mathematical society symposium, SMT- CSMT	Sousse (Tunisia) 17-21 march 2008	Give a talk
6	The nonlinear physics school	Peyresq (Nice-France) 5-11 september 2007	Presented my thesis
7	The First Franco- Spainol conferences of mathematics	Saragosse (Spain) 9-13 july 2007	Presence
8	The 15 th Tunisian Mathematical society symposium, SMT- CSMT	Sousse (Tunisia) 19-23 march 2007	Presented my thesis

Membership of Scientific and Professional Societies and Organizations

•

٠

Teaching Activities

Undergraduate

#	Course/Rotation Title	No./Code	Extent of Contribution (no. of lectures/Tutorials. Or labs, Clinics)
1	Linear Algebra	233N	
2	Set Theory	172N	
3	Calculus 2	211N	
4	Calculus 3	212N	
5	Calculus 1	152N	
6	Partial Differential	412N	
	Equations		
7	Principle Analysis	242N	
8	Math Physics 1	210N	
9	Math Physics 2	309N	

Brief Description of Undergraduate Courses Taught: (Course Title – Code: Description)

1	On successful completion of this course students will be able to:			
	 Solve linear system of equations by Gauss elimination method Find basis and dimension Find the rank of matrix Find determinant of matrix Find the inverse of matrix Apply Gram- Schmidt process on linear independent set Change of basis Find the eigen-values of matrix 			
2	Upon successful completion of this course students will be able to:			
	• Know the basic concepts of sets.			
	• Know the notions of Union, Intersection, Difference Complements and Power Sets.			
	• Know the definition of subsets of Cartesian product of sets and relations.			
	• Determine the different types of relations.			
	• Know the definition of functions.			
	• Discuss the different types of functions (One-one function ,Onto function ,			
	Correspondence).			

- Understand infinite sets.
- Determine countable sets and cardinal number.
- 3 On successful completion of this course students will be able to:
 - Use the integral by parts to solve the integration

- Solve the trigonometric integration
- Use the trigonometric substitutions to solve kind of integration
- Use partial fractions to evaluate integration of rational functions
- Use the Integral tables algebra systems to solve the integration
- Evaluate the Improper integrals
- Determine infinite sequences and series
- Test the converge and diverge of series
- Use Integral test
- Use Comparison test
- Use The Ratio and Root test
- Use Alternating series, and Absolute test and know Conditional convergence
- Find Power series and its convergence
- Find Taylor and Maclaurin series its convergence
- Use Binomial series and applications of Taylor series
- Find Parametric equations and Polar coordinates

Use Calculus with parametric curves

4 Study of main concepts of Calculus 3 as follows:

1. How to draw the curve of the function in the 3-D Coordinate System

- 1. Studying the Partial Derivatives and Higher Order Partial Derivatives
- 2. properties of functions and how to draw the curve of the function
- 4. Finding the tangent of the curve and the maximum and minimum values of the function.
- 5. Studying the Double Integrals and triple integrals.
- 5 1. Study of main concepts of Calculus as follows:

1. Finding limit of the function and studying its Continuous.

- 2. Studying the properties of functions and how to draw the curve of the function
- 3. Studying the relationship between Differentiation and Continuity.

4. Finding the tangent of the curve and the maximum and minimum values of the function.

5. Have the knowledge of how the function increased and decreased.

6 Introduction of partial differential equation. First order partial differential equation and its solution. Lagrange method. Characteristics method. partial differential equation of constant coefficient Cauchy problem. Classification of linear second order PDEs: Elliptic equation – Hyperbolic equation- Parabolic equation . It's solution by Characteristics method – d'Alembert's formula. Separation of variables in Cartesian coordinates

7	successful completion of this course students will be able to:
	 Understand the properties of real numbers, especially the completeness and ordering property. Learn the concept of the open group partial set of real numbers and their properties. Testing convergence sequences and series. Understand the limit of the real functions. Learn how to read mathematical text and understand the logical steps
8	 successful completion of this course students will be able to: Classify ordinary differential equations. Solve ordinary differential equations of first and second order. Deduce solutions of partial differential equations using separable of variables. Solve Wave equation in two and three variables.
9	 Fourier transform (Properties of Fourier Transform, Parseval's identity, convolution theorem), Laplace transform (The Definition _ Laplace Transforms _ Inverse Laplace Transforms Special Functions (gamma function, beta function) Complex analysis (Complex Numbers, Complex Functions, Elementary Functions) Partial Differential Equations (Laplace equation, Heat equation. Wave equation)

Postgraduate

#	Course/Rotation Title	No./Code	Extent of Contribution (no. of lectures/Tutorials. Or labs, Clinics)

Brief Description of Postgraduate Courses Taught: (Course Title - Code: Description)

1	
2	

Course Coordination

#	Course Title and Code	Coordination	Co-coordination	Undergrad.	Postgrad.	From	to

Guest/Invited Lectures for Undergraduate Students

#	Activity/Course Title and Code	Subject	College and University or Program	Date

Student Academic Supervision and Mentoring

#	Level	Number of Students	From	to

Supervision of Master and/or PhD Thesis

#	Degree Type	Title	Institution	Date

Ongoing Research Supervision

#	Degree Type	Title	Institution	Date

Administrative Responsibilities, Committee and Community Service (Beginning with the most recent)

Administrative Responsibilities

#	From	То	Position	Organization

Committee Membership

#	From	То	Position	Organization
1	1/1/2016	31/05/2016	member	Deanship of University Educational Development
2	1/10/2016	30/10/2016	member	committee for preparation the questions for Demonstrator

Scientific Consultations

#	From	То	Institute	Full-time or Part-time

Volunteer Work

#	From	То	Type of Volunteer	Organization

Personal Key Competencies and Skills: (Computer, Information technology, technical, etc.)

1	(X)html, Latex, Beamer
2	powerpoint, excel, Linux

Last Update

...10...../...09.../2018