

جامعة الإمام عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

COLLEGE OF ENGINEERING

BIOMEDICAL ENGINEERING DEPARTMENT

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING STUDY PLAN

1444H (2023G)

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Contents

Important Contacts	3
Vision, Mission & Educational Objectives	4
Student outcomes	5
BSc. Program Curriculum	6
Biomedical Engineering Curriculum Flowchart	
Biomedical Engineering Study Plan	10

6. Course Catalogue

2.1	Second Year Courses	(Freshman)	18
2.2	Third Year Courses	(Sophomore)	22
2.3	Fourth Year Courses	(Junior)	27
2.4	Fifth Year Courses	(Senior)	33
2.5	Electives Courses		36

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Study Plan

1. Important Contacts

Imam Abdulrahman Bin Faisal University (IAU)

P.O. Box: 1982, Dammam 31441,

Kingdom of Saudi Arabia **Tel:** (+966) – 13 – 8577000

Fax: (+966) – 13 – 8578048

E-mail: president@iau.edu.sa

College of Engineering

C1 – East (New) Campus, King Faisal Bin Abdulaziz Rd, P.O. Box: 1982, Dammam 31451, Kingdom of Saudi Arabia **Tel:** (+966) – 13 – 3331680 **E-mail:** engineering@iau.edu.sa

Biomedical Engineering Department (BMED)

Tel: (+966) – 13 – 3331703 **Email:** CE.BED@iau.edu.sa

Vice Deanship for Academic Affairs

Tel:(+966) – 13 - 3331708 **E-mail:** CE.VDAA@iau.edu.sa REG.ENG.D@iau.edu.sa

Deanship of Admission and registration

Tel: (+966) – 13 - 013-3332738

E-mail: registrar@iau.edu.sa

2. Vision, Mission & Educational Objectives

The Vision

Pioneering nationally and internationally in educational excellence, industrial partnership, and research in biomedical engineering.

The Mission

Enriching the biomedical engineering profession with highly qualified and well-trained graduates to enhance industry and healthcare.

Program Educational Objectives (PEOs)

The BME Program Educational Objectives reflect the university, college and department missions. They are important for successful professional practice and pursuing advanced degrees. The Biomedical Engineering Departmental Program, with its various constituents, discussed in successive meetings the ABET requirements for developing the PEOs by focusing on the main elements of the university's mission, such as creative knowledge, research and professional community services. All those elements are the key focus points of PEOs of the program, and those PEOs can help us to envision the future of our prospective and current students. After several departmental meetings, the department, with the help and consultation of its constituents, approved the following PEOs, in that the Biomedical Engineering graduates are prepared to:

- 1. Meet the expectations of their employers in the biomedical engineering field or other professional careers.
- 2. Pursue postgraduate degrees in biomedical engineering or other disciplines.
- 3. Practice the profession as a responsible engineer to advance the community healthcare system.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

3. Student Outcomes:

The BMED has met, studied and discussed ABET Engineering Accreditation Commission "1"- to-"7" general criteria Student Outcomes (SOs) and the program criteria and came to the conclusion that ABET outcomes 1-7 along with program criteria sufficiently meet the program requirements. The Department adopted SOs "1" to "7" with the program criteria in a department meeting as prescribed in the ABET report. The SOs, along with program criteria, constitute a predetermined set of competencies that students should demonstrate at the time of graduation. These competencies are accomplished through various courses the students take during the program. However, performance measures would have to be specified for all SOs to make them measurable and relevant to the Biomedical Engineering program. Before graduation, students of the Imam Abdulrahman Bin Faisal University's Biomedical Engineering program will demonstrate:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. an ability to communicate effectively with a range of audiences.
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

4. BSc. Program Curriculum

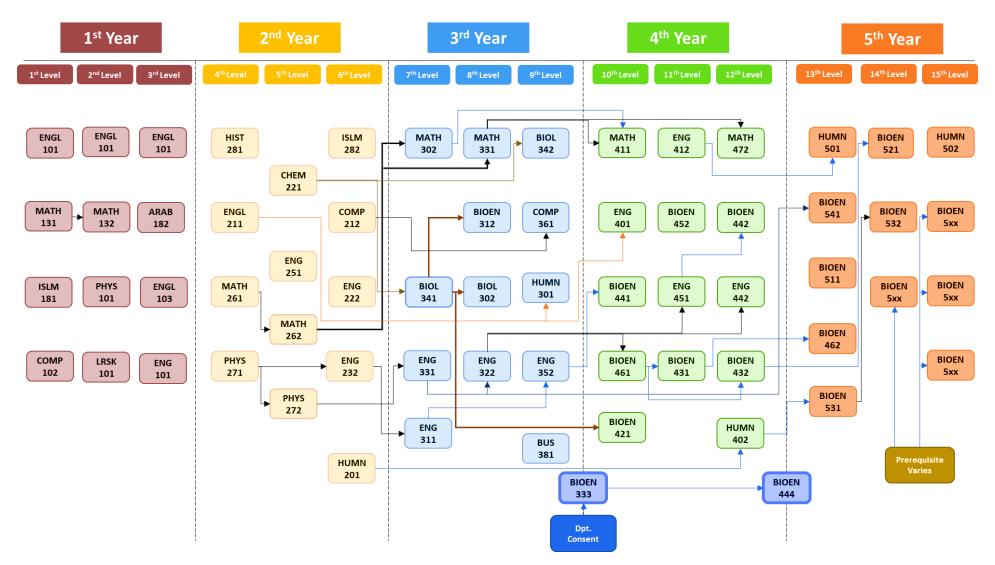
Biomedical Engineering program consists of four years (134 credits) plus a preparatory year (40 credits), during which a student takes courses in English language, math, physics, computer skills, learning and searching skills, and basic design studios. The language of instruction is English because a program graduate will end up working within an international team and because English is the language of the profession.

One credit is translated into 80 minutes of lecturing and 180 minutes of practical/laboratory. The program is distributed among 12 trimesters after the preparatory year. The first three trimesters are common to all programs and are dedicated to basic sciences and engineering, such as calculus, physics, chemistry, engineering drawing, and computer programming. The sequence of courses with detailed information is listed in Tables 1&2 and in Tables 4-1 to 4-6 below:

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Study Plan

Table 1: Biomedical Engineering B.Sc. CurriculumTotal Credit Hours 174: (40 Preparatory + 134 Program)


1st `	Year: Prepara	atory	2 nd	Year: Freshn	nan	3 rd	Year: Sophon	nore	4	th Year: Junio	r	5	th Year: Senio	or
1 st	2 nd	3 rd	1 st	2 nd	3 rd	1 st	2 nd	3 rd	1 st	2 nd	3 rd	1 st	2 nd	3 rd
Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester	Trimester
General English Language (IP)	General English Language (IP)	General English Language (7 Cr)	History of Civilization of Kingdom (2 Cr)	Calculus II (4 Cr)	Islamic Ethics and Values (2 Cr)	Linear Algebra (3 Cr)	Differential Equations (3 Cr)	Entrepreneu rship (2 Cr)	Probability and Statistics (3 Cr)	Biomed. Electronics & Measureme nt (3 Cr)	Research Methodolog y (1 Cr)	Professional Practice & Ethics (2 Cr)	Senior Design Project II (4 Cr)	Global Business Culture (2 Cr)
Creed and Family in Islam (2 Cr)	Learning and Communicat ion Skills (3 Cr)	Arabic Language Skills (2 Cr)	English Composition (3 Cr)	Physics II (4 Cr)	Library Skills (1 Cr)	Biology for Engineers (3 Cr)	Physiology & Anatomy for Engineers (3 Cr)	Oral Communicat ion & Public Speaking (1 Cr)	Technical Writing (2 Cr)	Digital Design (3 Cr)	Numerical Methods (3 Cr)	Senior Design Project I (2 Cr)	Design of Medical Devices (2 Cr)	Elective II ** (3 Cr)
Math I (5 Cr)	Math II (5 Cr)	English for Academic and Specific Purpose (4 Cr)	Calculus I (4 Cr)	General Chemistry (3 Cr)	Engineering Drawings (3 Cr)	Dynamics (2 Cr)	Electronic Devices & Circuits (3 Cr)	Biochemistr y and Molecular Biology (2 Cr)	Fluid Dynamics (2 Cr)	Engineering Economics (2 Cr)	Microproces sors (3 Cr)	Project Management (1 Cr)	Elective I ** (3 Cr)	Elective III ** (3 Cr)
Intr. to Programmin g (4 Cr)	Physics (4 Cr)	Engineering Drawings (4 Cr)	Physics I (4 Cr)	Introduction to Engineering (1 Cr)	Computer Programmin g (2 Cr)	Electrical Circuits (3 Cr)	Foundation of Biomechanic s (2 Cr)	Thermodyna mics (3 Cr)	Signals & Systems in BME (3 Cr)	Safety & Maintenanc e in Healthcare (2 Cr)	Intr. to Communica tion Systems & Networks (2 Cr)	Control Systems in BME (3 Cr)		Elective IV ** (3 Cr)
					Statics (3 Cr)			Advanced Computer Programmin g (2 Cr)	Biomaterials (2 Cr)		Biomedical Instrument ation Design (3 Cr)	Biomedical Equipment (4 Cr)		
(11 Cr)	(12 Cr)	(17 Cr)	(13 Cr)	(12 Cr)	(11 Cr)	(11 Cr)	(11 Cr)	(10 Cr)	(12 Cr)	(10 Cr)	(12 Cr)	(12 Cr)	(9 Cr)	(11 Cr)
								Summer Training I * (0 Cr)			Summer Training II * (0 Cr)			

 Out of 134 Credits:
 Humanities: 16 Credits (12%)
 Basic Sciences: 39 Credits (29%)
 Engineering: 79 Credits (59%)

 * Taken during following summer
 ** The selection of technical elective course should be done under the supervision of the student advisor.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Table 2: Biomedical Engineering B.Sc. Program Flow Chart

جا معة الإمام عبد الرحمن بن فيصل MAM ABDULRAHMAN BIN FAISAL UNIVERSITY **Study Plan**

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

1 st Trimester					
Course #	Course Title	Cr Hrs	Pre- Requisite		
ENGL 101	General English Language*	7 (IP)	Admission		
ISLM 181	Creed and Family in Islam	2	Admission		
COMP 102	Introduction to Programming	4	Admission		
MATH 131	Mathematics (1)	5	Admission		
	Total Credit Hours:	11			
	2 nd Trimester				
Course #	Course Title	Cr Hrs	Pre- Requisite		
ENGL 101	General English Language*	7 (IP)	Admission		
LRSK 101	Learning and Communication Skills	3	Admission		
PHYS 101	Physics	4	Admission		
MATH 132	Mathematics (2) 5		MATH 131		
	3 rd Trimester				
Course #	Course Title	Cr Hrs	Pre- Requisite		
ENGL 101	General English Language*	7	Admission		
ENG 101	Engineering Drawings	4	Admission		
ENGL 103	English for Academic and Specific		Admission		
ARAB 182	Arabic Language Skills	2	Admission		
	Total Credit Hours:	17			

Table 4-1: Biomedical Engineering Curriculum - First Year – Preparatory

Cr: Credit Hours

*: General English Language course is on annual basis.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Table 4-2. Domedical Engineering Currentan - Second Teal - Tresiman				
	1 st Trimester			
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
HIST 281	History and Civilization of Kingdom	2;2;0	None	
ENGL 211	English Composition	3 ; 4.5 ; 0	None	
MATH 261	Calculus I	4;6;0	None	
PHYS 271	Physics I	4 ; 4.5 ; 3	None	
	Total Credits & Contact Hours:	13 ; 17 ; 3		
	2 nd Trimester	<u>.</u>		
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
CHEM 221	General Chemistry	3;3;3	None	
ENG 251	Introduction to Engineering	1;1.5;0	None	
MATH 262	Calculus II	4;6;0	MATH 261	
PHYS 272	Physics II	4 ; 4.5 ; 3	PHYS 271	
	Total Credits & Contact Hours:	12 ; 15 ; 6		
	3rd Trimester	<u> </u>	<u></u>	
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
ISLM 282	Islamic Ethics and Values	2;2;0	None	
HUMN 201	Library Skills	1;1.5;0	None	
COMP 212	Computer Programming	2;1.5;3	None	
ENG 222	Engineering Drawings	3;4.5;0	None	
ENG 232	Statics	3;4.5;0	PHYS 271	
	Total Credits & Contact Hours:	11 ; 14 ; 3		

 Table 4-2:
 Biomedical Engineering Curriculum - Second Year – Freshman

Cr: Credit Hours

Lc: Lecture Hours;

Tr: Tutorial Hours;

Lb: Laboratory Hours

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Table 4-3: Biomedical Engineering Curriculum - Third Year – Sophomore				
	1 st Trimester		1	
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
MATH 302	Linear Algebra	3;4.5;0	MATH 262	
ENG 311	Dynamics	2;3;0	ENG 232	
BIOL 341	Biology for Engineers	3;3;3	CHEM 221	
ENG 331	Electrical Circuits	3;3;3	PHYS 272	
	Total Credits & Contact Hours:	11 ; 13.5 ; 6		
	2 nd Trimester			
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
MATH 331	Differential Equations	3;3;3	MATH 262	
BIOL 302	Physiology & Anatomy for Engineers	ysiology & Anatomy for		
ENG 322	Electronic Devices & Circuits	3;3;3	ENG 331	
BIOEN 312	Foundation of Biomechanics	2 ; 1.5 ; 3	BIOL 341	
	Total Credits & Contact Hours:	11 ; 10.5 ; 12		
	3 rd Trimester			
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
BUS 381	Entrepreneurship	2;2;0	None	
ENG 352	The sume of up and inc	2.4 5.0	ENG 311	
	Thermodynamics	3;4.5;0		
BIOL 342	Biochemistry and Molecular Biology	3;4.5;0 2;1.5;3	CHEM 221	
	Biochemistry and Molecular			
BIOL 342	Biochemistry and Molecular Biology Oral Communication & Public	2 ; 1.5 ; 3	CHEM 221	
BIOL 342 HUMN 301	Biochemistry and Molecular Biology Oral Communication & Public Speaking Advanced Computer Programming Total Credits & Contact Hours:	2 ; 1.5 ; 3 1 ; 1.5 ; 0	CHEM 221 ENGL 211	

 Table 4-3:
 Biomedical Engineering Curriculum - Third Year – Sophomore

College of Engineering

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Study Plan

Summer Term – One Month				
Course #	Course Title	Cr Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
BIOEN 333	Summer Training I	0;0;0	Dpt Consent	

College of Engineering

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Table 4-4: Biomedical Engineering Curriculum - Fourth Year – Junior			
	1 st Trimester		
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite
MATH 411	Probability & Statistics	3;3;3	MATH 302 & MATH 331
ENG 401	Technical Writing	2;3;0	ENGL 211
BIOEN 441	Fluid Dynamics	2;1.5;3	ENG 352
BIOEN 461	Signals & Systems In BME	3;3;3	ENG 322
BIOEN 421	Biomaterials	2;3;0	BIOL 341
	Total Credits & Contact Hours:	12 ; 13.5 ; 9	
	2 nd Trimester		
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite
BIOEN 431	Biomed. Electronics & Measurement	3;3;3	BIOEN 461
ENG 451	Digital Design	3;3;3	ENG 322
ENG 412	Engineering Economics	2;3;0	None
BIOEN 452	Safety & Maintenance in Healthcare	2;3;0	None
	Total Credits & Contact Hours:	10;12;6	
	3 rd Trimester		
Course #	Course Title	Cr & Cont Hrs	Pre-
Course #	Course mile	Cr ; Lc ; Tr/Lb	Requisite
HUMN 402	Research Methodology	1;1.5;0	HUMN 201
BIOEN 432	Biomed Instrumentation Design	3;3;3	BIOEN 461
BIOEN 442	Microprocessors	3;3;3	ENG 451
ENG 442	Introduction to Communication Systems & Networks	2;3;0	ENG 322
MATH 472	Numerical Methods	3 ; 4.5 ; 0	MATH 331
	Total Credits & Contact Hours:	12 ; 15 ; 6	
Cr: Credit Hours	Lc: Lecture Hours; Tr: Tu	itorial Hours; L	b: Laboratory Hours

College of Engineering

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Study Plan

	Summer Term – Two Month				
Course #	Course Title	Cr Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite		
BIOEN 444	Summer Training II	0;0;0	BIOEN 333		

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

1 st Trimester				
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
BIOEN 531	Senior Design Project I	2 ; 1.5 ; 3	HUMN 402	
BIOEN 541	Control Systems in BME	3;3;3	ENG 331	
HUMN 501	Professional Practice and Ethics	2;3;0	ENG 412	
BIOEN 511	Project Management	1;1.5;0	None	
BIOEN 462	Biomedical Equipment	4 ; 4.5 ; 3	BIOEN 431	
	Total Credits & Contact Hours:	12 ; 13.5 ; 9		
	2 nd Trimester			
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
BIOEN 532	Senior Design Project II	4;0;12	BIOEN 531	
BIOEN 521	Design of Medical Devices	2 ; 1.5 ; 3	BIOEN 432	
BIOEN 5xx	Technical Elective I*	3 ; Varies	**	
	Total Credits & Contact Hours:	9 ; Varies		
	3 rd Trimester			
Course #	Course Title	Cr & Cont Hrs Cr ; Lc ; Tr/Lb	Pre- Requisite	
HUMN 502	Global Business Culture	2;3;0	None	
BIOEN 5xx	Elective II*	3 ; Varies	**	
BIOEN 5xx	Elective III*	3 ; Varies	**	
BIOEN 5xx	Elective IV*	3 ; Varies	**	
	Total Credits & Contact Hours:	11 ; Varies		

 Table 4-5: Biomedical Engineering Curriculum - Fifth Year – Senior

Cr: Credit Hours Lc: Lecture Hours; Tr: Tutorial Hours; Lb: Laboratory Hours * Selection of technical electives should be done under the supervision of the student advisor. ** Specific course pre-requisite should be fulfilled.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Study Plan

Electives (All are 3 Credit Hours)					
Course #	Course # Course Title				
BIOEN 513	Biomedical Digital Signal Processing	3;3;3			
BIOEN 523	Biomedical Electromagnetics	3 ; 4.5 ; 0			
BIOEN 585	Medical Laser	3;3;3			
BIOEN 553	Biomedical Imaging Systems	3;3;3			
BIOEN 563	Medical Image Processing & Communication	3;3;3			
BIOEN 573	Magnetic Resonance Imaging	3;3;3			
BIOEN 583	Ultrasound	3 ; 4.5 ; 0			
BIOEN 504	Introduction to Biomedical Optics	3 ; 4.5 ; 0			

Table 4-6: Biomedical Engineering Curriculum – Electives (All are 3 Credit Hours)

جامعة الإمار، عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

> * Selection of technical electives should be done under the supervision of the student advisor. ** Specific course pre-requisite should be fulfilled.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

1. Course Catalogue

6.1 Second-Year Courses (Freshman)

Second Year - First Trimester

HIST 281: History and Civilization of Kingdom

Credit Hours: 2	Lectures: 2	Lab/Practical: 0	Prerequisite: None
University mandated cou	urse. Description to be provi	ded by the department concerned.	

ENGL 211: English Composition

Credit Hours: 3	Lectures: 4.5	Lab/Practical: 0	Prerequisite: None
-----------------	---------------	------------------	--------------------

This course will enable the student to improve his ability to write expository essays. The course topics include Investigation of topic-selection processes, development of thesis statements, outlining as it relates to support for a selected thesis statement, both in sentence and slug-style, and practice and emphasis on critical thinking skills.

MATH 261: Calculus I

Credit Hours: 4	Lectures: 6	Lab/Practical: 0	Prerequisite: None
To introduce students to the	e basic concepts and	methods of Calculus. Topics include Functions	and graphs, polynomials,
exponential, logarithmic and	d trigonometric functio	ons, Limits, continuity, and differentiability of f	unctions of one variable.
Techniques of differentiation.	. Implicit Differentiation	n. Local extrema, first and second derivative for loc	cal extrema. Concavity and
inflection points. Curve sketcl	hing. Applied extrema p	problems. L'Hopital's rule and applications. Integra	tion, definite and indefinite
integrals, fundamental theore	em of calculus, integrati	ion by substitution, integration by parts, improper	integrals, and applications.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

PHYS 271: Physics I

Credit Hours: 4	Lectures: 4.5	Lab/Practical: 3	Prerequisite: None
			· · ··

This is an introductory course in Classical Mechanics. PHY 271 is the first of a two-semester general physics course. The primary subject of this course is Mechanics. Topics includes motions in multiple dimensions, vectors, forces and the laws of motion, circular motion, energy, momentum, and rotational motion. Elements of this subject material are found in all parts of nature. This is a four-credit hour course.

Second Year - Second Trimester

CHEM 221: General Chemistry

Credit Hours: 3	Lectures: 3	Lab/Practical: 3	Prerequisite: None
This course will introduc	e the student to the basic voca	bulary used in different branches of chemist	ry, and to major concepts in
the field (e.g. stoichion	netry, thermochemistry,) wi	th emphasis on problem solving. The cour	se topics include: Chemical
foundations (units of m	easurement, uncertainty in m	easurement, significant figures and calcula	tions, dimensional analysis,
temperature, density, cla	assification of matter); Atoms, m	nolecules and ions, fundamental chemical law	s, atomic structure, periodic
table and periodicity; N	omenclature of compounds, p	ercent composition, determining the formu	la of a compound, type of
reactions and stoichiom	etry of reaction and calculatic	ons; Solution and solubility, properties of s	solutions, strong and weak,
electrolytes, acid-base r	eactions, oxidation-reduction r	eactions, balancing oxidation-reduction equ	ations, titrations; Molecular
theory of gases, gas law	ws, effusion and diffusion, rea	l gases, chemistry in the atmosphere; The	mochemistry, enthalpy and
calorimetry, Hess's law;	General concept of bonding a	nd types of chemical bonding in molecules	and ions. Basic concepts of
organic chemistry includ	ing polymers.		

Laboratory: Qualitative and quantitative aspects of general chemistry.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

ENG 251: Introduction to Engineering

Lectures: 1.5

Credit Hours: 1 Lab/Practical: 0 Prerequisite: None This course is designed to allow students to explore engineering through case studies, and problem-solving using computers. Students will learn about the various aspects of the engineering profession and acquire both technical skills and non-technical skills. The course topics include: Engineering profession, broad overview of the different fields of engineering, including professional societies and their student chapters, professional licensing and registration, professional codes of ethics, introduction to engineering design, and problem solving techniques. Students learn design, teamwork, written and oral communication skills through participation in a conceptual design project.

MATH 262: Calculus II

Credit Hours: 4 Lectures: 6 Lab/Practical: 0 The course topics include: Analytic geometry in calculus, polar coordinates, area in polar coordinates, tangent lines and arc length, conic sections. Three dimensional space, vectors, parametric equations of lines and planes. Vector-valued functions, unit tangent, normal and binomial vectors, curvature. Partial derivatives, limits and continuity, chain rule, directional derivatives, gradients, maxima and minima of functions of two variables, Lagrange multipliers. Multiple integrals, double and triple integrals.

PHYS 272: Physics II

octuros: 45

Credit Hours 4

This is an introductory course in Elect	tricity and Magnetism. PHY 272 the second course	in the calculus-based physics sequence
covering introductory electricity and	magnetism. Topics include Coulomb's Law, electr	ric fields, Gauss' Law, electric potential,
capacitance, circuits, magnetic forces	and fields, Ampere's Law and induction. This is a	four-credit hour course.

ab/Practical: 3

Prerequisite: MATH 261

Prerequisite: PHVS 27

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Study Plan

Second Year – Third Trimester

HUMN 201: Library Skills

Credit Hours: 1	Lectures: 1.5	Lab/Practical: 0	Prerequisite: None
-----------------	---------------	------------------	--------------------

Distinguish among various library and information resources, recognize citation elements, search databases, use print indexes, locate books in a classified system. Use of libraries and information sources, both print and electronic, including locations and services of the University Library with an emphasis on basic library research tools and information literacy concepts. Library skills. Library research. Brainstorming. Library orientation. Call Numbers. Library cataloguing & Classification System (Library of Congress & Dewey Decimal). General care and maintenance of books and other library. Library language. Finding a book using the library computer. Introduction to Databases and efficient use of it for research purposes.

COMP 212: Computer Programming

С	redit Hours: 2	Lectures:	1.5	Lab/Practical: 3		Prerequisite: None
			6			

This course aims at the provision of the concepts of algorithm, programming language, and program and developing basic problem solving skills to the learner. The course topics include: Overview of computer programming and programming languages (machine, assembly and High-level languages). Programming principles of algorithm and flow of control, including sequential execution, selection, iteration, and subroutine. Basics of a typical programming language (e.g. Matlab). Introduction to computer methods and algorithms for analysis and solution of engineering problems using numerical methods in a workstation environment (Numerical integration, roots of equations, simultaneous equation solving and matrix analysis).

ENG 222: Engineering Drawings

Credit Hours: 3 Lectures: 4.5 Lab/Practical: 0 Prerequisite: None	Credit Hours: 3 Lectures: 4.5	Lab/Practical: 0	Prerequisite: None
---	-------------------------------	------------------	--------------------

Students are introduced to fundamentals of engineering graphics and drawings (lines, curves and polygons) with the basics of manual drafting techniques and the use of drafting equipment, visualization of engineering drawing views or sections (plan, elevation and side view) from three dimensional isometric shapes such as machines and civil works, and principles of computer aided drafting and modeling using AutoCAD. Practice in creating and evaluating typical designs drawn from different specialty areas that include steel structures (components and connections), mechanical and electrical works.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

ENG 232: Statics

Credit Hours: 3Lectures: 4.5Lab/Practical: 0Prerequisite: PHYS 271

This course enable the students to learn the tools necessary to have a deeper understanding of the principles of applied mechanics and the modeling of force systems in engineering statics. The course topics include: Analysis of forces on engineering structures (particles and rigid bodies) in equilibrium. Properties of forces, moments, couples, and resultants. Equilibrium conditions, friction, evaluation of section properties (centroids, area moments of inertia).

6.2 Third Year Courses (Sophomore)

Third Year - First Trimester

MATH 302:	Linear Algebra		
Credit Hours: 3	Lectures: 4.5	Lab/Practical: 0	Prerequisite: MATH 262

Systems of linear equations, row reduction and echelon forms, solution sets of linear systems, linear transformations. Matrix algebra, matrix operations, inverse of a matrix, matrix factorizations, subspaces of the Euclidean n-space, dimension and rank. Determinants, Cramer's rule. Eigenvalues and eigenvectors, diagonalization. Inner product, length, and orthogonality, Gram-Schmidt process.

ENG 311: Dynamics

Credit Hours: 2 Lectures:	3 Lab/Practical: 0	Prerequisite: ENG 232
---------------------------	--------------------	-----------------------

In this course the student are introduced to engineering dynamics principles through applications involving problem solving and creation of design solutions to engineering scenarios. The course topics include: Analysis of motions of particles and rigid bodies encountered in engineering in terms of kinematics (position, velocity, acceleration, absolute and relative motion) and kinetics that includes forces, work, energy, impulse, and momentum. Introduction to mechanical vibration.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

BIOL 341: Biology for Engineers

Credit Hours: 3 Lectures: 3 Lab/Practical: 3 Prerequisite: CHEM 221

This introductory course is designed for biomedical engineering students. It covers the fundamental biological principles and skills. Biological structure and function at the cellular and systemic level is particularly emphasized. The course also establishes the main connections within biology principles with biomedical engineering and its applications. Includes two hours of laboratory sessions illustrating basic laboratory techniques and the structures and functions of the human body's composite systems.

ENG 331: Electrical Circuits

Credit Hours: 3	Lectures: 3	Lab/Practical: 3	Prerequisite: PHYS 272
-----------------	-------------	------------------	------------------------

Students learn electric circuits techniques for the analysis and simulation of linear electric circuits, and measurements of their properties. The course builds upon the student's background gained in physics and calculus courses and prepares students for learning Electronic devices and circuits, Signals and Systems. The topics include: Models of circuit elements; circuit analysis using Ohm's and Kirchoff's laws; nodal and mesh analysis; Thevenin and Norton equivalent circuits, solution of first and second order circuits; phasor-based solutions to AC circuits; elementary frequency response. Includes laboratory work.

Third Year - Second Trimester

MATH 331: Differential Equations

Credit Hours: 3	Lectures: 3	Lab/Practical: 3		Prerequisite: MATH 262

This Course is devoted to the solutions of linear 1st, 2nd and higher order differential equations by using different direct methods; Laplace transforms method, power series method and matrix methods for solving linear differential systems.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

BIOL 302: Physiology & Anatomy for Engineers

Lectures: 3 Lab/Practical: 3

This is one semester course designed for biomedical engineering students. It is a study of the function and the structure of human organ systems from an integrative perspective. Systems to be studied include integumentary, skeletal, muscular, cardiovascular, lymphatic, nervous, digestive, endocrine and respiratory systems. In addition, the course will emphasize on developing an understanding of the engineering approach toward understanding biological function. Includes two hours of laboratory sessions which provides a hands-on learning experience for exploration of human system components and basic physiology.

ENG 322: Electronic Devices and Circuits

Credit Hours: 3 Lab/Practical: 3 Lectures: 3 This course presents a solid foundation for the students in the structure and function of semiconductor devices. Students learn to examine the design of some circuits that utilize these devices. Topics include: Principles of diode, Bipolar Junction Transistor (BJT), and Metal Oxide Semiconductor Field Effect transistor (MOSFET) devices and circuits. Graphical and analytical means of analysis. Linear modeling; amplifiers; digital inverters and logic gates. Biasing and small-signal analysis. Time-domain and frequency domain analysis and design. Operational amplifiers, frequency response, differential amplifier structure and design, active filters and oscillators, and power devices.

BIOEN 312: Foundation of Biomechanics

Lectures: 1.5

This course provides a background in musculoskeletal anatomy and principles of biomechanics. The course builds on the concepts gained in Statics and Dynamics for human activities from onside, and biology and biochemistry from the other side. Topics include: Introduction about biomechanics and solving biomechanical problems. Modeling human performance (static, guasistatic, and dynamic approaches). The overall loading of the musculoskeletal system during functional activities. Methods of

Lab/Practical: 3

جامعة الإمام عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

Credit Hours: 3

Credit Hours: 2

Prerequisite: BIOL 341

Prerequisite: ENG 331

Prerequisite: BIOL 341

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

Study Plan

estimation of forces in the joints and muscles and evaluation of the endurance of human tissues under traumatic loading conditions. The course includes basic experiments of biomechanics (testing the mechanical properties of biological tissues)

Third Year - Third Trimester

BUS 381: Entrepreneurship

Credit	t Hour	rs: 2	Lecture	es: 2	Lab/Pr	acti	cal: 0				Prerequisite: None
 	••						· · · · ·				

University mandated course. Description to be provided by the department concerned.

ENG 352: Thermodynamics

Credit Hours: 3	Lectures: 4.5	Lab/Practical: 0	Prerequisite: ENG 311
-----------------	---------------	------------------	-----------------------

This course offers basic definitions of thermodynamic systems, control volume, working fluid, processes and cycles, Work, Heat and other types of energy, ideal gas and equation of state, also definition of internal energy, specific heat and enthalpy. Topics include: Pure substance and phase change, thermal equilibrium, phase diagram. First law of thermodynamics for closed and open systems, applications of first law in thermal engineering systems. Heat engine, Heat pump and Refrigerator, Entropy and Second law of thermodynamics. Basic principles of heat transfer, Conduction, Convection, Radiation, and combined modes. Applications of combined heat transfer modes in modern engineering systems. Application of thermodynamic principles in construction and biomedical engineering.

BIOL 342: Biochemistry & Molecular Biology

Credit Hours: 2 Lectures: 1.5 Lab/Practical: 3	Prerequisite: CHEM 221
--	------------------------

The course introduces biomedical engineering students with little background in biology to fundamentals of biochemistry, molecular biology and genetics. Topics include: Physiochemical principles, chemistry of carbohydrates, fats and proteins, minerals, yeasts and vitamins, hormones and hormonal assay and their role in regulating vital functions. Enzymes and enzyme assay, Nucleotides and nucleic acids (DNA & RNA) chemistry and function. Nucleic acid: synthesis, Genetic Code and genetic transcription.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

HUMN 301: Oral Communication and Public Speaking

Credit Hours: 1Lectures: 1.5Lab/Practical: 0Prerequisite: ENGL 211In this course the students will develop their ability to speak confidently and effectively in a variety of public speaking situations.Students will prepare and present several different types of speeches that arts managers are often required to make. Particular attention is paid to style, persuasion, and credibility in public speaking.

ENG 361: Advanced Computer Programming

Credit Hours: 2Lectures: 1.5Lab/Practical: 3Prerequisite: COMP 212This course builds upon the student's background gained in computer programming course (ENG 212). It presents an advanced
view of computer programming, mainly using object oriented programming. The course topics include: Introducing the
fundamental ideas behind the object-oriented approach to programming; through a computer programming language (e.g C++,
Java or Visual Basic). Concentrating on aspects that best demonstrate object-oriented principles and good practice, student will
gain a solid basis for further study of object-oriented software development. Student will need to have experience of writing
small computer programs, such as that gained through prior study of ENG 202.

BIOEN 333: Summer Training I

Credit Hours: 0 Lectures: 0 Lab/Practical: 0

In the summer of Sophomore level, every Biomedical Engineering student is obliged to make a summer practice of 20 working days (8 Hours/day) in a specialized workshop either onsite or offsite where students learn to work safely in a workshop. Students are introduced to the use of hand tools, the lathe, the milling machine, drill press, saws, and precision measuring tools. Students should also gain basic skills required to build simple electrical and electronic circuits. Students apply these skills by completing a project. Observations from the summer practice must be documented and presented in the form of a clear and concise technical report.

Prerequisite: Dpt Consent

6.3. Fourth Year Courses (Junior)

Fourth Year - First Trimester

ENG 401: Technical Writing

	Credit Hours: 2	Lectures: 3	Lab/Practical: 0	Prerequisite: ENGL 211
Т	his course focuses	on effective process	of written, oral, and v	visual technical communication for academic settings. Topics

include: Various forms of academic and personal essay-writing. Original essay writing and class criticism and discussion. Model essays and essays on the craft of writing reading and discussion for verbal logic, communicative power, and visceral appeal.

MATH 411: Probability and Statistics

Credit Hours: 3 Lectures: 3 Lab/Practical: 3 Prerequisite: MATH 302 & MATH 331 In this course students will acquire an understanding of probability and statistics through mathematical formulas, and examination of data. Students will apply probability and statistics concepts through class activities and projects related to the engineering field. Topics include: Presentation of data, textual, tabular and graphical, sampling techniques. Measures of central tendency, mean, median, mode. Measures of variation, range, variance, standard deviation. Probability distributions, counting techniques, uniform, binomial, normal, and exponential distributions. Test of hypothesis, test concerning means, variation, and proportion. Analysis of variance, combinatorial mathematics, fundamental principles of counting, binomial theorem.

BIOEN 441: Fluid Dynamics

Credit Hours: 2 Lectures:1.5

Fundamental concepts of fluid mechanics, fluid properties, fundamentals of fluid statics, fluid dynamics and general equations of motion, types of flow, continuity and Bernoulli equations, flow through pipes and nets, open channel flow, stream-flow measurements and calculations, pumping tests.

جامعة الإما& عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSIT

Lab/Practical: 3

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

BIOEN 461: Signals and Systems in BME

Lab/Practical: 3 Credit Hours: 3 Lectures: 3

This course serves to introduce the students to fundamentals of signal and systems analysis and manipulation and their application in the medical field. This course also reinforces mathematical knowledge in differential calculus and adding universal quantitative analysis tools such as Fourier analysis. The course topics include: Laplace transforms, Fourier (series & integral), convolution and the response of linear systems, frequency response, Bode diagrams and Polar Plots. Sampling, Discrete-time signals; frequency analysis of discrete-time signals, spectral estimation, data records and digital filters; and compression of **biomedical signals** through time-domain and frequency domain coding. Includes laboratory and computational experiences with biomedical applications (e.g. Model Based Analysis of Physiological Signals. Modeling the Nerve Action Potential and estimation of signals in noise).

BIOEN 421: Biomaterials

جامعة الإمام عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

Credit Hours: 2 Lectures: 3 Lab/Practical: 0

This course surveys materials intended for medical applications. It also covers specific characteristics related to the selection, processing, and testing (*in vitro* and *in vivo*) of biomaterials (e.g. metals, stainless steel, polymers, ceramics, composites and titanium) in dental, orthopedic, and ophthalmic applications. Properties of biomaterials including; physical and mechanical properties will be covered. Moreover, the course will provide an overview about the interactions between the implant material and the physiological environment (biocompatibility) with an overview about host reaction to biomaterials.

Prerequisite: BIOL 341

Fourth Year – Second Trimester

BIOEN 431: Biomedical Electronics and Measurements

Credit Hours: 3 Lectures	Lab/Practical: 3	Co-Requisite: BIOEN 461
--------------------------	------------------	-------------------------

Introduces students to the principles that allow engineers to make precise measurements of physiological signals. Students will learn how to interpret and manipulate the output of a sensor in terms of its frequency response and frequency content, how to determine the filtering properties of a circuit. The course topics include: Physiological signals, origin of biopotentials (ECG, EMG, EEG, EOG, ERG...). Biomedical electrodes. Biomedical signal detection, amplifications, and filtering. Electrical safety in medical environment. Measurement and measurement errors. Measurement methods and global static and dynamic characteristics of measuring instrumentation. Includes Electronics and measurements lab:

Electronics part: This part introduces students to the widespread application of electronics and electronic devices in biomedical engineering. Hands-on experimentation related to biomedical applications.

Measurement part: This part introduces students to the measurement of physiological signals. Students will collect and analyze specific signals. Students should demonstrate skills in measurement techniques and potential data analysis.

ENG 451: Digital Design

Credit Hours: 3 Lectures: 3 Lab/Practical: 3

In this course the students will learn the fundamental concepts, methods of analysis, and design of digital logic devices and systems. Topics include: Boolean algebra, binary numbers, logic gates, introduction to CMOS and TTL logic families, Combinational and sequential Circuit analysis and design, Digital circuit design optimization methods using random logic gates, Multiplexers, Decoders, Registers, Counters, and Programmable Logic Arrays. Design, simulation, and testing of digital circuits using Computer aided tools.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

ENG 412: Engineering Economics

جامعة الإمام عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

credit hours, 2 Lectures, 5 Lab/Fractical, 6 Frerequisite, None	Credit Hours: 2	Lectures: 3	Lab/Practical: 0	Prerequisite: None
---	-----------------	-------------	------------------	--------------------

The course is designed to educate the students about the principles of economics when applied to engineering field. Topics include, basic concepts of engineering economics, economic equivalence, time value of money. In this course, students will learn how to formulate single cash-flow, equal payment series and gradient series. Nominal and effective interest rates, debt management. The students will perform analysis on engineering economic projects and will evaluate between different alternatives using traditional engineering economic analysis techniques. Students will learn the concepts of depreciation, income taxes and will prepare simple financial statement while performing the project cash flow analysis.

BIOEN 452: Safety and Maintenance in Health Care

Credit Hours: 2	Lectures: 3	Lab/Practical: 0	Prerequisite: None
-----------------	-------------	------------------	--------------------

A study of codes, standards, and management principles. Emphasis is on the proper use and application of safety test equipment, preventive maintenance procedures, hospital safety. Course topics include: Definition of safety. Electrical, gas, and fire safety. Safe environment for patients, medical personnel and attendants. Medical Equipment life cycle (Planning,

Acquisition, Test, Maintenance, Decommissioning). Generation of a computer database for equipment, suppliers, dealers and manufacturers (Medical Equipment Record MER). Using Medical Equipment service manual. Preventive maintenance procedures. Corrective maintenance, repair and amendment of existing equipment. Basic troubleshooting principles.

Fourth Year – Third Trimester

HUMN 402: Research Methodology

Credit Hours: 1 Lectures: 1.5	Lab/Practical: 0	Prerequisite: HUMN 201
-------------------------------	------------------	------------------------

In this course students learn the tools to be familiar with their theses in terms of research questions and design, methodology, data collection and analysis. Topics include: Research methodology concepts and definition. Research ethics. Problem identification. Research plan preparation. Data gathering and collection. Data presentation and analysis. Design of research report. Case study.

Study Plan

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

BIOEN 432: Biomedical Instrumentation Design

Lectures: 3

Lab/Practical: 3

This course introduces the students to the basic design concept required to acquire, process and interpret biological and medically relevant signals. Emphasis is placed on recognizing and accommodating limitations inherent in sensor and their associated electronics. Topics include: design of biomedical instrumentation including different sensor types and their associated electronics. Mathematical models of sensor ranging including resistive sensors and biosensors. The design of the signal conditioning electronics. Practical application on specific cases where students will be able to demonstrate their skills on evaluating a biomedical instruments using MATLAB/LabVIEW/Multisim software.

BIOEN 442: Microprocessors

Credit Hours: 3 Lab/Practical: 3 Lectures: 3 This course is designed to provide the student with a basic understanding of microprocessor operation, programming, interfacing, interrupts, and troubleshooting. Topics include: Microprocessors: architecture- registers- types and function of address, data, and control buses-Clock- Input and output ports- modes of addressing- control unit RISC- Evolution and applications of microprocessors. Microprocessor interfacing: Characteristics of peripheral units- memory (EPROM & RAM) interface- decodersperipheral programmable interface (8255) serial interface- RS232 protocol –A/D and D/A interface- stepper motor interfaceserial to USB conversion- parallel to serial conversion. Includes lab.

ENG 442: Introduction to Communication Systems & Networks

Credit Hours:2 Lab/Practical: 0 Lectures: 3

In this course the students will learn the important methods, architectures, and implementations of communication systems and networks. The course topics include Analysis and design of analog communication systems: AM and FM modulation and demodulation. Noise in AM and FM systems. Digital communication systems: Sampling, guantization and encoding. PCM and PAM systems. Digital modulation and demodulation/detection techniques. Time and Frequency Division Multiplexing. Probability of error in digital communication systems. Basics of point-to-point, primarily digital, physical-layer communications with sampling,

IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

Credit Hours: 3

Prerequisite: BIOEN 461

Prerequisite: ENG 451

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

quantization, multiplexing, and modulation theory and design. Presentation and analysis of Elements of local area networks and packet communication at the network services layers.

MATH 472: Numerical Methods

Credit Hours: 3Lectures: 4.5Lab/Practical: 0Prerequisite: MATH 331This Course is devoted to find the numerical solutions a given function by using several methods such as Fixed- point, Bisection,
Fasle, Newton- Raphson and Secant methods. Furthermore, this course is devoted also to find the numerical solutions of systems
of linear and non-linear equation by using several methods such as iterative methods of Jacobi, Gauss-Seide, SOR, Qaussian
elimination technique and LU- Factorization. Finally, the numerical integration, numerical solutions of first-order differential
equations by using Taylor's, Runge-Kutta, Euler's and Admas Bashforth methods and numerical solutions the Parabolic, Hyperbolic
and Elliptic partial differential equations will be covered in this course.

BIOEN 444: Summer Training II:

Credit Hours: 0Lectures:0Lab/Practical: 0Prerequisite: Dpt Consent

In the summer of Junior level, every Biomedical Engineering student is obliged to make a summer training of 40 working days (8 Hours/day) in a professional institution, laboratory or project design organization doing biomedical engineering applications. Observations from the summer practice must be documented and presented in the form of a clear technical report. Students aiming to specialize in clinical engineering should get some training in hospital-based experience in medical systems, technical knowledge, clinical engineering management, technology assessment, and hospital management. The student work with team members include a physician, nurse, psychologist, physical, occupational, speech , therapists and a social worker. Students aiming to specialize in Rehabilitation engineering should get training under the direct supervision of a professional engineer experienced in rehabilitation engineering, the students learn hand-on engineering approaches to management of head injury, amputation, and spinal cord injury in out- patient and in-patient rehabilitation. Students are expected to design and build a number of devices meeting rehabilitation needs.

33

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

6.4. Fifth Year Courses (Senior)

Fifth Year – First Trimester

BIOEN 531: Senior Design Project I

	Credit Hours: 2	Lectures: 1.5	Lab/Practical: 3	Prerequisite: HUMN 402
т	ndividual research i	n a field of special	interest under the sune	nvision of a faculty member as a requirement for the B.Sc. degree

Individual research in a field of special interest under the supervision of a faculty member as a requirement for the B.Sc. degree, culminating in a written report/thesis. The central goal of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. The Graduation Project is divided between two semesters. Methodology is developed and pre-data are collected in the first semester. Experiment is run, data is analyzed, and conclusions are sought in the second semester.

BIOEN 541: Control Systems in BME

	Credit Hours. 5	Lectures. 5	Lab/Plactical. 5	Prerequisite. ENG 551
]	Introduction to analys	sis and design of fee	edback control systems,	Classical control theory in the time and frequency domain,
I	Modeling of physical	and biological inf	formation systems using	linear and nonlinear differential equations, Stability and
I	performance of interco	onnected systems, Us	se of block diagrams, Boc	le plots, Nyquist criterion, and Design of feedback controllers.

ab/Dractical 2

HUMN 501: Professional Practice and Ethics

Credit Hours: 2 Lectures: 3 Lab/Practical: 0 Prerequisite: ENG 4	412
--	-----

This course examines ethical frameworks and moral issues related to the profession. Topics include: Examination of the nontechnical issues dealt with by design professional, including: professional ethics, marketing and business development, professional engagement, personnel and project management, risk management, professional liability insurance, and dispute resolution.

Cradit Hourse 2

Droroquicitor ENC 221

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

BIOEN 511: Project Management

جامعة البما& عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

	Credit Hours: 1	Lectures: 1.5	Lab/Practical: 0		Prereq	uisite: No	one
E	xplanation of the Proje	ect Management p	principles and main tools through the example of a simple	four	phases	Project	Life
C	Cycle. The course is	compliant with P	roject Management Institute standard.				

BIOEN 462 Biomedical Equipment

Credit Hours: 3	Lectures: 4.5	Lab/Practical: 3	Prerequisite: BIOEN 431
This course covers t	he principles structure,	clinical needs, fu	nction and operation of a wide range of medical equipment
(diagnostic and thera	peutic) that can be four	nd in a clinical envi	ronment. Topics include diagnostic and therapeutic equipment:
electrocardiograph, p	acemakers, external c	lefibrillators, impla	ntable cardioverters defibrillators, heart valves, hemodialysis
delivery systems, ver	ntilators, and pulse oxir	netry. In addition,	the course covers equipment's key features from engineering
standards.			

Fifth Year - Second Trimester

BIOEN 521: Design of Medical Devices

C	redit Hours: 2	Lectur	es: 1.5	Lab/P	ractical: 3	}					F	Prerequisite: BI	OEN 432
Thi	s multidisciplinary	problem	based	learning	module	is	design	to	bridge	the	technical know	wledge with th	e broader
pra	practical design and commercial challenges and aims to advance the students' knowledge and skills in the area of medical device												
des	design through case studies. It will enable students to develop a critical understanding and awareness of effective implementation												
stra	strategies for new and emerging technologies utilizing the appropriate design routes.												

جا معة الإمام عبد الرحمن بن فيصل MAM ABDULRAHMAN BIN FAISAL UNIVERSITY

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

BIOEN 532: Senior Design Project II

	Credit Hours: 4	Lectures: 0	Lab/Practical: 12		Prerequisite: BIOEN 531
_		.		• ·· ·	

Individual research in a field of special interest under the supervision of a faculty member as a requirement for the B.Sc. degree, culminating in a written report/thesis. The central goal of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. The Graduation Project is divided between two semesters.

Methodology is developed and pre-data are collected in the first semester. Experiment is run, data is analyzed, and conclusions are sought in the second semester.

Fifth Year – Third Trimester

HUMN 502: Global Business Culture

Credit Hours: 2	Lectures: 3	Lab/Practical: 0	Pre	erequisite: None
This course enhances	the student's awarene	ss and understanding of	f cross-cultural communication in a busines	s context and to
develop the student's	cross-cultural analytic	al skills. Topics include:	: Trade, Trade finance management, Logi	stics and supply
chain, e-Business, Int	ernational marketing	and trade compliance.	Cultural diversity, cultural awareness for	business, global
market place, clients'	specific business nee	ds, successful interaction	on with international teams, International	Business Skills,
Building International	Teams, Generic Cultu	ural Awareness, manne	rs, and cross cultural, or intercultural co	mmunication. e-
Business, Internationa	I marketing and trade	compliance.		

جامعة الرمام عبدالرحمن بن فيصل MAM ABDULRAHMAN BIN FAISAL UNIVERSITY

6.5 Elective Courses

All electives are 3 credits. Lectures and lab/practical credits are to be determined by the instructor, depending on course requirements.

BIOEN 513: Biomedical Digital Signal Processing

Credit Hours: 3	Lectures: 3	Lab/Practical: 3	Prerequisite: Dpt Consent				
The aim of this cou	irse is to provide st	tudents with a background and	understanding of the biomedical digital signal processing.				
Moreover, a broad overview of state-of-the-art topics and cutting-edge research in the area of digital signal processing in medicine							
and biology will be	and biology will be presented.						

BIOEN 523: Biomedical Electromagnetics

Credit Hours: 3	Lectures: 4.5	Lab/Practical: 0	Prerequisite: Dpt Consent
Electrodynamics bas	sed on Maxwell's equa	tions. Energy storage and flow in	electromagnetic fields. Transmission lines, waves and

radiating systems. Impact of electromagnetic waves on tissue. Cellular effects.

BIOEN 585: Medical Laser

Credit Hours: 3 Lectures: 3 Lab/Practical: 3	Prerequisite: Dpt Consent
--	---------------------------

Basics: Fundamentals of light, laser terminology, specular and diffuse reflections, laser output and types.

Laser in healthcare: Medical laser delivery devices, laser bio-effects on the eye and skin, medical surveillance, anesthesia practices and controls, surgical smoke, medical laser standards and regulations.

Laser Safety: Medical safety control measures and practices, laser hazard classification, Maximum Permissible Exposure (MPE) and Nominal Hazard Zone (NHZ), laser accidents.

جامعة الإمام عبد الرحمن بن فيصل MAM ABDULRAHMAN BIN FAISAL UNIVERSITY

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

BIOEN 553: Biomedical Imaging Systems

Credit Hours: 3Lectures: 3Lab/Practical: 3Prerequisite: Dpt ConsentThe course introduces students to the basic physics and instrumentation concepts of of main biomedical imaging modalities
such as X- Ray, Radiography, Computed Tomography, Ultrasound and Magnetic Resonance Imaging (MRI). Student will learn
the fundamental concept of radiation and image formation processes along with the safety issues of different imaging modalities.
The focus of the course is a series of labs using PHYWE training units and Gate 4 simulation software and home works that will
enable students to perform useful biomedical imaging experiments that in turns not only will help them to understand the
principle of imaging systems but also will familiarize them with basic parameters that matter most for clinical applications.

BIOEN 563: Medical Image Processing & Communication

Credit Hours: 3	Lectures: 3	Lab/Practical: 3	Prerequisite: Dpt Consent		
This course provid	les students with	an overview of computational and mathema	tical aspects of medical image processing and		
communication. S	Students will lear	n the fundamentals behind image processing	and analysis methods and algorithms with an		
emphasis on biomedical applications. It covers principles and algorithms for processing both deterministic and random signals					
presented in image	es. Topics include	e filtering, coding, feature extraction and mode	eling. The focus of the course is a series of labs		
and home works t	hat provide pract	cical experience in processing of real medical ir	mages using MATLAB.		

BIOEN 573: MRI

Credit Hours: 3Lectures: 3Lab/Practical: 3Prerequisite: Dpt ConsentIntroduces physics of magnetic resonance. Principles and technological implementation of MRI. Image formation, acquisition and
processing – Hardware/Instrumentation – Functional MRI – Included are special applications in some contemporary issues like
RF safety aspects.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

جامعة الرمام عبد الرحمن بن فيصل IMAM ABDULRAHMAN BIN FAISAL UNIVERSITY

Credit Hours: 3	Lectures: 4.5	Lab/Practical: 0	Prerequisite: Dpt Consent				
Basic principles an	d technological implem	entation of ultrasound imaging	system. Image formation in Ultrasound. pulse-echo				
ultrasound instrumentation; image storage and display; Doppler instrumentation; color doppler and color flow imaging; image							
characteristics and	characteristics and artifacts; bio-effects; safety regulations. Applications and future trends.						

BIOEN 504: Introduction to Biomedical Optics

Credit Hours: 3	Lectures: 4.5	Lab/Practical: 0	Prerequisite: Dpt Consent
This course aims to	nrovide students with	a background and understandir	on of the fundamentals of ontical engineering and

This course aims to provide students with a background and understanding of the fundamentals of optical engineering and expose them to some exciting current research in this field. The propagation of light in tissue, optical components, fluorescence, Raman, two-photon, spectral microscopy, and confocal microscopy, polarization in tissue, and spectroscopy will be studied. Moreover, a broad overview of state-of-the-art topics and cutting-edge research in the area of optics and lasers in medicine and biology will be presented.